Table of Contents
Relation algebras
Abbreviation: RA
Definition
A \emph{relation algebra} is a structure $\mathbf{A}=\langle A,\vee,0,\wedge,1,\neg,\circ,^{\smile},e\rangle$ such that
$\langle A,\vee,0,\wedge,1,\neg\rangle$ is a Boolean algebra
$\langle A,\circ,e\rangle $ is a monoid
$\circ$ is \emph{join-preserving}: $(x\vee y)\circ z=(x\circ z)\vee (y\circ z)$
$^{\smile}$ is an \emph{involution}: $x^{\smile\smile}=x$, $(x\circ y)^{\smile}=y^{\smile}\circ x^{\smile}$
$^{\smile}$ is \emph{join-preserving}: $(x\vee y)^{\smile}=x^{\smile}\vee y^{\smile}$
$\circ$ is residuated: $x^{\smile}\circ(\neg (x\circ y))\le\neg y$
Morphisms
Let $\mathbf{A}$ and $\mathbf{B}$ be relation algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\to B$ that is a Boolean homomorphism and preserves $\circ$, $^{\smile}$, $e$:
$h(x\circ y)=h(x)\circ h(y)$, $h(x^{\smile})=h(x)^{\smile}$, $h(e)=e$
Examples
Example 1: $\langle \mathcal P(U^2), \cup, \emptyset, \cap, U^2, -, \circ, ^\smile, id_U \rangle$ the full relation algebra of binary relations on a set $U$.
Example 2: $\langle \mathcal P(G), \cup, \emptyset, \cap, G, -, \circ, ^\smile, \{e\} \rangle$ the group relation algebra of a group $\langle G, *, ^{-1}, e \rangle$, where $X\circ Y=\{x*y : x\in X, y\in Y\}$ and $X^\smile=\{x^{-1} : x\in X\}$.
Basic results
Properties
| Classtype | variety |
|---|---|
| Equational theory | undecidable |
| Quasiequational theory | undecidable |
| First-order theory | undecidable |
| Locally finite | no |
| Residual size | unbounded |
| Congruence distributive | yes |
| Congruence modular | yes |
| Congruence n-permutable | yes, $n=2$ |
| Congruence regular | yes |
| Congruence uniform | yes |
| Congruence extension property | yes |
| Definable principal congruences | yes |
| Equationally def. pr. cong. | yes |
| Discriminator variety | yes |
| Amalgamation property | no |
| Strong amalgamation property | no |
| Epimorphisms are surjective | no |
Finite members
$\begin{array}{lr}
f(1)= &1
f(2)= &1
f(3)= &0
f(4)= &3
f(5)= &0
f(6)= &0
\end{array}$