Processing math: 100%

FLc-algebras

Abbreviation: FLc

Definition

A \emph{FLc-algebra} is an FL-algebra A=A,,,,1,,/,0 such that

is \emph{contractive}: xxx

Remark: This is a template. If you know something about this class, click on the 'Edit text of this page' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.

Morphisms

Let A and B be … . A morphism from A to B is a function h:AB that is a homomorphism: h(xy)=h(x)h(y)

Definition

An \emph{…} is a structure A=A, of type such that

is …: axiom

is …: axiom

Examples

Example 1:

Basic results

Properties

Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.

Finite members

$\begin{array}{lr}

f(1)= &1\\
f(2)= &\\
f(3)= &\\
f(4)= &\\
f(5)= &\\

\end{array}\begin{array}{lr}

f(6)= &\\
f(7)= &\\
f(8)= &\\
f(9)= &\\
f(10)= &\\

\end{array}$

Subclasses

Superclasses

References


1) K. Chvalovsky and R. Horcík, \emph{Full Lambek calculus with contraction is undecidable}, Journal of Symbolic Logic, \textbf{81}(2), 524–540

QR Code
QR Code flc-algebras (generated for current page)