### Table of Contents

## Conjugative binars

Abbreviation: **ConBin**

### Definition

A \emph{conjugative binar} is a binar $\mathbf{A}=\langle A,\cdot\rangle$ such that

$\cdot$ is conjugative: $\exists w, \ x\cdot w=y \iff \exists w, \ w\cdot x=y$.

##### Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be commutative binars. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:

$h(x\cdot y)=h(x)\cdot h(y)$

### Examples

Example 1:

### Basic results

### Properties

### Finite members

n | # of algebras |
---|---|

1 | 1 |

2 | 4 |

3 | 215 |