Table of Contents
Conjugative binars
Abbreviation: ConBin
Definition
A \emph{conjugative binar} is a binar $\mathbf{A}=\langle A,\cdot\rangle$ such that
$\cdot$ is conjugative: $\exists w, \ x\cdot w=y \iff \exists w, \ w\cdot x=y$.
Morphisms
Let $\mathbf{A}$ and $\mathbf{B}$ be commutative binars. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
$h(x\cdot y)=h(x)\cdot h(y)$
Examples
Example 1:
Basic results
Properties
Finite members
n | # of algebras |
---|---|
1 | 1 |
2 | 4 |
3 | 215 |