Processing math: 100%

Brouwerian algebras

Abbreviation: BrA

Definition

A \emph{Brouwerian algebra} is a structure A=A,,,1, such that

A,,,1 is a distributive lattice with top

gives the residual of : xyzyxz

Morphisms

Let A and B be Brouwerian algebras. A morphism from A to B is a function h:AB that is a homomorphism:

h(xy)=h(x)h(y), h(xy)=h(x)h(y), h(1)=1, h(xy)=h(x)h(y)

Definition

A \emph{Brouwerian algebra} is a BL-algebra A=A,,,1,, such that

xy=xy

Examples

Example 1:

Basic results

Properties

Finite members

f(1)=1f(2)=1f(3)=1f(4)=2f(5)=3f(6)=5f(7)=8f(8)=15f(9)=26f(10)=47f(11)=82f(12)=151f(13)=269f(14)=494f(15)=891f(16)=1639f(17)=2978f(18)=5483f(19)=10006f(20)=18428Valuesknownuptosize49[Erne,Heitzig,Reinhold(2002)]

Subclasses

Superclasses

References


QR Code
QR Code brouwerian_algebras (generated for current page)