Table of Contents
Name of class
Abbreviation: TarskiA
Definition
A \emph{Tarski algebra} is a structure $\mathbf{A}=\langle A,\to\rangle$ of type $\langle 2\rangle$ such that $\to$ satisfies the following identities:
$(x\to y)\to x=x$
$(x\to y)\to y=(y\to x)\to x$
$x\to(y\to z)=y\to(x\to z)$
Morphisms
Let $\mathbf{A}$ and $\mathbf{B}$ be Tarski algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x \to y)=h(x) \to h(y)$
Examples
Example 1: $\langle\{0,1\},\to\rangle$ where $x\to y=0$ iff $x=1$ and $y=0$.
Basic results
Tarski algebras are the implication subreducts of Boolean algebras.
Properties
Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.
Finite members
$\begin{array}{lr}
f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\
\end{array}$ $\begin{array}{lr}
f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\
\end{array}$
Subclasses
[[...]] subvariety
[[...]] expansion
Superclasses
[[...]] supervariety
[[...]] subreduct