Table of Contents
Sqrt-quasi-MV-algebras
Abbreviation: sqMV
Definition
A $\sqrt{'}$\emph{quasi-MV-algebra}1) is a structure $\mathbf{A}=\langle A, \oplus, \sqrt{'}, ', 0, 1, k\rangle$ such that $\sqrt{'}$ is a unary operation,
$\mathbf{A}=\langle A, \oplus, ', 0, 1\rangle$ is a quasi-MV-algebra,
$x'=\sqrt{'}\sqrt{'}x$,
$k'=k$, and
$\sqrt{'}(x\oplus 0)\oplus 0=k$.
Morphisms
Let $\mathbf{A}$ and $\mathbf{B}$ be $\sqrt{'}$qMV-algebras. A morphism from $\mathbf{A} $ to $\mathbf{B}$ is a function $h:A\to B$ that is a homomorphism:
$h(x\oplus y)=h(x)\oplus h(y)$, $h(\sqrt{'}x)=\sqrt{'}h(x)$, $h(0)=0$, $h(k)=k$.
Examples
The standard $\sqrt{'}$qMV-algebra is $\mathbf S_r=\langle [0,1]^2,\oplus, \sqrt{'}, ', \mathbf 0, \mathbf 1, \mathbf k\rangle$ where $\langle a,b\rangle\oplus \langle c,d\rangle=\langle \min(1,a+c), \frac12\rangle$, $\sqrt{'}\langle a,b\rangle'=\langle b,1-a\rangle$, $\langle a,b\rangle'=\langle 1-a,1-b\rangle$, $\mathbf 0=\langle 0,\frac12\rangle$, $\mathbf 1=\langle 1,\frac12\rangle$ and $\mathbf k=\langle \frac12,\frac12\rangle$.
Basic results
The variety of $\sqrt{'}$qMV-algebras is generated by the standard $\sqrt{'}$qMV-algebra.
The operation $\oplus$ is commutative: $x\oplus y = y\oplus x$.
Only the trivial $\sqrt{'}$qMV-algebra is an MV-algebra.
Properties
Finite members
$n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# of algs | 1 | 1 | 2 | 2 | 5 | 5 | 8 | 8 | 16 | 16 | 24 | 24 | |||||||||||||
# of si's | 0 | 1 | 1 | 0 | 2 | 0 | 0 |