Processing math: 100%

Skew lattices

Abbreviation: SkLat

Definition

A \emph{skew lattice} is a structure A=A,,, of type 2,2 such that

A, is a band,

A, is a band,

and the following absorption laws hold: x(xy)=x=x(xy), (xy)y=y=(xy)y.

Morphisms

Let A and B be skew lattices. A morphism from A to B is a function h:AB that is a homomorphism: h(xy)=h(x)h(y), h(xy)=h(x)h(y),

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr}

f(1)= &1\\
f(2)= &3\\
f(3)= &7\\
f(4)= &\\
f(5)= &\\

\end{array}\begin{array}{lr}

f(6)= &\\
f(7)= &\\
f(8)= &\\
f(9)= &\\
f(10)= &\\

\end{array}$

Subclasses

[[Lattices]] expanded type
[[Rectangular_bands]] expanded type

Superclasses

[[Semigroups]] reduced type

References

1)\end{document} %</pre>


1) Leech, J., Skew lattices in rings, Alg. Universalis 26 (1989), 48–72. [(Leech1993> Leech, J., The geometric structure of skew lattices, Trans. Amer. Math. Soc. 35 (1993), 823–842. [(Leech1996> Leech, J., Recent developments in the theory of skew lattices, Semigroup Forum 52 (1996), 7–24.

QR Code
QR Code skew_lattices (generated for current page)