Table of Contents
Shells
Definition
A \emph{shell} is a structure $\mathbf{S}=\langle S,+,0,\cdot,1 \rangle $ of type $\langle 2,0,2,0\rangle $ such that
$0$ is an identity for $+$: $0+x=x$, $x+0=x$
$1$ is an identity for $\cdot$: $1\cdot x=x$, $x\cdot 1=x$
$0$ is a zero for $\cdot$: $0\cdot x=0$, $x\cdot 0=0$
Morphisms
Let $\mathbf{S}$ and $\mathbf{T}$ be shells. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:S\rightarrow T$ that is a homomorphism:
$h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(0)=0$, $h(1)=1$
Examples
Example 1:
Basic results
Properties
Classtype | variety |
---|---|
Equational theory | decidable |
Quasiequational theory | |
First-order theory | undecidable |
Locally finite | no |
Residual size | unbounded |
Congruence distributive | no |
Congruence modular | no |
Congruence n-permutable | no |
Congruence regular | no |
Congruence uniform | no |
Congruence extension property | no |
Definable principal congruences | no |
Equationally def. pr. cong. | no |
Amalgamation property | yes |
Strong amalgamation property | yes |
Epimorphisms are surjective |
Finite members
$\begin{array}{lr}
f(1)= &1
f(2)= &
f(3)= &
f(4)= &
f(5)= &
f(6)= &
\end{array}$