### Table of Contents

## Right quasigroups

Abbreviation: **RQgrp**

### Definition

A \emph{right quasigroup} is a structure $\mathbf{A}=\langle A,\cdot,/\rangle$ of type $\langle 2,2\rangle $ such that

$(y/x)x = y$

$(xy)/y = x$

Remark:

##### Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be right quasigroups. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:

$h(xy)=h(x)h(y)$, $h(x/y)=h(x)/h(y)$.

### Examples

Example 1:

### Basic results

### Properties

### Finite members

$\begin{array}{lr}
f(1)= &1

f(2)= &3

f(3)= &44

f(4)= &14022

f(5)= &

f(6)= &

f(7)= &

\end{array}$