Table of Contents
Quandles
Abbreviation: Qnd
Definition
A \emph{quandle} is a structure $\mathbf{Q}=\langle Q,\triangleright,\triangleleft\rangle$ of type $\langle 2,2\rangle$ such that
$\triangleright$ is \emph{left-selfdistributive}: $x\triangleright(y\triangleright z)=(x\triangleright y)\triangleright(x\triangleright z)$
$\triangleleft$ is \emph{right-selfdistributive}: $(x\triangleleft y)\triangleleft z=(x\triangleleft z)\triangleleft(y\triangleleft z)$
$(x\triangleright y)\triangleleft x=y$
$x\triangleright (y\triangleleft x)=y$
$\triangleright$ is \emph{idempotent}: $x\triangleright x=x$
Remark: The last identity can equivalently be replaced by $\triangleleft$ is \emph{idempotent}: $x\triangleleft x=x$
Morphisms
Let $\mathbf{Q}$ and $\mathbf{R}$ be quandles. A morphism from $\mathbf{Q}$ to $\mathbf{R}$ is a function $h:Q\rightarrow R$ that is a homomorphism: $h(x \triangleright y)=h(x) \triangleright h(y)$ and $h(x \triangleleft y)=h(x) \triangleleft h(y)$.
Examples
Example 1: If $\langle G,\cdot,^{-1},1\rangle$ is a group and $x\triangleright y=xyx^{-1}$, $x\triangleleft y=x^{-1}yx$ (conjugation) then $\langle G,\triangleright,\triangleleft\rangle$ is a quandle.
Basic results
Properties
Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.
Finite members
$\begin{array}{lr}
f(1)= &1\\ f(2)= &1\\ f(3)= &3\\ f(4)= &7\\ f(5)= &22\\ f(6)= &73\\ f(7)= &298\\ f(8)= &1581\\ f(9)= &11079\\ f(10)= &\\
\end{array}$