Table of Contents
Pocrims
Abbreviation: Pocrim
Definition
A \emph{pocrim} (short for \emph{partially ordered commutative residuated integral monoid}) is a structure $\mathbf{A}=\langle A,\oplus,\ominus,0\rangle$ of type $\langle 2,2,0\rangle$ such that
(1): $((x \ominus y) \ominus (x \ominus z)) \ominus (z \ominus y) = 0$
(2): $x \ominus 0 = x$
(3): $0 \ominus x = 0$
(4): $(x \ominus y) \ominus z = x \ominus (z \oplus y)$
(5): $x \ominus y = y \ominus x = 0 \Longrightarrow x=y$
Morphisms
Let $\mathbf{A}$ and $\mathbf{B}$ be pocrims. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x \oplus y)=h(x) \oplus h(y)$, $h(x \ominus y)=h(x) \ominus h(y)$, $h(0)=0$.
Definition
A \emph{pocrim} is a structure $\mathbf{A}=\langle A,\oplus,\ominus,0\rangle$ such that
$\langle A,\ominus,0\rangle$ is a BCK-algebra
$(x \ominus y) \ominus z = x \ominus (z \oplus y)$
Examples
Example 1:
Basic results
Properties
Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.
Finite members
1,1,2,7,26,129
$\begin{array}{lr}
f(1)= &1\\ f(2)= &1\\ f(3)= &2\\ f(4)= &7\\ f(5)= &26\\
\end{array}$ $\begin{array}{lr}
f(6)= &129\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\
\end{array}$