Ockham algebras

Abbreviation: OckA

Definition

An \emph{Ockham algebra} is a structure $\mathbf{A}=\langle A,\vee ,0,\wedge ,1,'\rangle $ such that

$\langle A,\vee ,0,\wedge ,1\rangle $ is a bounded distributive lattice

$'$ is a dual endomorphism: $(x\wedge y)' =x'\vee y'$, $ (x\vee y)' =x'\wedge y'$, $ 0'=1$, $1'=0$

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be Ockham algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x')=h(x)'$, $h(0)=0$, $h(1)=1$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1
f(2)= &1
f(3)= &2
f(4)= &
f(5)= &
f(6)= &
f(7)= &
f(8)= &
f(9)= &
f(10)= &
\end{array}$

Subclasses

Superclasses

References

1)\end{document} %</pre>


QR Code
QR Code ockham_algebras (generated for current page)