Normed vector spaces

Abbreviation: NFVec

Definition

A \emph{normed vector space} is a structure $\mathbf{A}=\langle V,+,-,\mathbf 0,s_r(r\in F),||\cdot||\rangle$ over an ordered field $\mathbf F=\langle F,+,-,0,\cdot,1,\le\rangle$ such that

$\langle V,+,-,0,s_r(r\in F)\rangle$ is a vector space over $\mathbf F$

$||\cdot||:V\to [0,\infty)$ is a \emph{norm}: $||x||=0\iff x=\mathbf 0$

$||rx||=|r|\cdot||x||$

$||x+y|| \le ||x||+||y||$

Remark: $rx=s_r(x)$ is the scaler product, and $|r|=\begin{cases}r&\text{ if }r\ge 0\\-r&\text{ if }r<0\end{cases}$

This is a template. If you know something about this class, click on the 'Edit text of this page' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be normed vector spaces. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a norm-nonincreasing homomorphism: $h(x + y)=h(x) + h(y)$, $h(rx)=rh(x)$, $||h(x)||\le||x||$.

Definition

An \emph{…} is a structure $\mathbf{A}=\langle A,\ldots\rangle$ of type $\langle …\rangle$ such that

$\ldots$ is …: $axiom$

$\ldots$ is …: $axiom$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr}

f(1)= &1\\
f(2)= &\\
f(3)= &\\
f(4)= &\\
f(5)= &\\

\end{array}$ $\begin{array}{lr}

f(6)= &\\
f(7)= &\\
f(8)= &\\
f(9)= &\\
f(10)= &\\

\end{array}$

Subclasses

[[Banach spaces]]

Superclasses

[[Metric spaces]] reduced type
[[Vector spaces]] reduced type

References


1) F. Lastname, \emph{Title}, Journal, \textbf{1}, 23–45 MRreview

QR Code
QR Code normed_vector_spaces (generated for current page)