Monadic algebras

Abbreviation: MonA

Definition

A \emph{monadic algebra} is a structure $\mathbf{A}=\langle A, \vee, 0, \wedge, 1, \neg, f\rangle$ of type $\langle 2, 0, 2, 0, 1, 1\rangle$ such that

$\langle A, \vee, 0, \wedge, 1, \neg\rangle$ is a Boolean algebra

$f$ is a \emph{unary closure operator}: $f(x\vee y)=f(x)\vee f(y)$, $f(0)=0$, $x\le f(x)=f(f(x))$

$f$ is \emph{self conjugated}: $f(x)\wedge y=0\iff x\wedge f(y)=0$

Remark: This is a template. If you know something about this class, click on the 'Edit text of this page' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be monodic algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x \vee y)=h(x) \vee h(y)$, $h(\neg x)=\neg h(x)$, $h(f(x))=f(h(x))$.

Definition

An \emph{…} is a structure $\mathbf{A}=\langle A,\ldots\rangle$ of type $\langle …\rangle$ such that

$\ldots$ is …: $axiom$

$\ldots$ is …: $axiom$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr}

f(1)= &1\\
f(2)= &1\\
f(3)= &\\
f(4)= &\\
f(5)= &\\

\end{array}$ $\begin{array}{lr}

f(6)= &\\
f(7)= &\\
f(8)= &\\
f(9)= &\\
f(10)= &\\

\end{array}$

Subclasses

[[...]] subvariety
[[...]] expansion

Superclasses

[[Boolean algebras]] reduced type
[[Closure algebras]]

References


QR Code
QR Code monadic_algebras (generated for current page)