### Table of Contents

## Left neofileds

Abbreviation: **LNfld**

### Definition

A \emph{left neofield} is a structure $\mathbf{F}=\langle F,+,\backslash,/,0,\cdot,1,^{-1}\rangle $ of type $\langle 2,2,2,0,2,0,1\rangle $ such that

$\langle F,+,\backslash,/,0\rangle $ is a loop

$\langle F-\{0\},\cdot,1,^{-1}\rangle$ is a group

$\cdot$ left-distributes over $+$: $x\cdot(y+z)=x\cdot y+x\cdot z$

##### Morphisms

Let $\mathbf{F}$ and $\mathbf{K}$ be left neofields. A morphism from $\mathbf{F}$ to $\mathbf{K}$ is a function $h:F\to K$ that is a homomorphism:

$h(x+y)=h(x)+h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)$, $h(0)=0$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(1)=1$

### Examples

Example 1:

### Basic results

### Properties

### Finite members

$\begin{array}{lr}
f(1)= &1

f(2)= &

f(3)= &

f(4)= &

f(5)= &

f(6)= &

\end{array}$

### Subclasses

### Superclasses

### References

Keedwell, A.D., Construction, properties and applications of finite neofields, Comment. Math. Univ. Carolin. 41, 2 (2000) 283–297