Processing math: 100%

Hilbert algebras

Abbreviation: HilA

Definition

A \emph{Hilbert algebra} is a structure A=A,,1 of type 2,1 such that

x(yx)=1

(x(yz))((xy)(xz))=1

xy=1 and yx=1x=y

Morphisms

Let A and B be Hilbert algebras. A morphism from A to B is a function h:AB that is a homomorphism: h(xy)=h(x)h(y) and h(1)=1.

Definition

A \emph{Hilbert algebra} is a structure A=A,,1 of type 2,1 such that

xx=1

1x=x

x(yz)=(xy)(xz)

(xy)((yx)x)=(yx)((xy)y)

Examples

Example 1: Given any poset with top element 1, A,,1, define ab={1 if abb otherwise. Then A,,1 is a Hilbert algebra.

Basic results

Hilbert algebras are the algebraic models of the implicational fragment of intuitionistic logic, i.e., they are (,1)-subreducts of Heyting algebras.

The variety of Hilbert algebras is not generated as a quasivariety by any of its finite members 1).

Properties

Finite members

$\begin{array}{lr}

f(1)= &1\\
f(2)= &\\
f(3)= &\\
f(4)= &\\
f(5)= &\\

\end{array}\begin{array}{lr}

f(6)= &\\
f(7)= &\\
f(8)= &\\
f(9)= &\\
f(10)= &\\

\end{array}$

Subclasses

... subvariety

... expansion

Superclasses

... supervariety

... subreduct

References


1) S. Celani and L. Cabrer: Duality for finite Hilbert algebras. Discrete Math. 305 (2005), no. 1-3, 74-–99.
2) A. Diego, \emph{Sur les algébres de Hilbert}, Collection de Logique Math\'ematique, S\'er. A, 1966, 1–55

QR Code
QR Code hilbert_algebras (generated for current page)