Table of Contents
Distributive lattice-ordered semigroups
Abbreviation: DLOS
Definition
A \emph{distributive lattice ordered semigroup} is a structure $\mathbf{A}=\langle A,\vee,\wedge,\cdot\rangle$ of type $\langle 2,2,2\rangle$ such that
$\langle A,\vee,\wedge\rangle$ is a distributive lattice
$\langle A,\cdot\rangle$ is a semigroup
$\cdot$ distributes over $\vee$: $x\cdot(y\vee z)=(x\cdot y)\vee (x\cdot z)$ and $(x\vee y)\cdot z=(x\cdot z)\vee (y\cdot z)$
Morphisms
Let $\mathbf{A}$ and $\mathbf{B}$ be distributive lattice-ordered semigroups. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\vee y)=h(x) \vee h(y)$, $h(x\wedge y)=h(x) \wedge h(y)$, $h(x\cdot y)=h(x) \cdot h(y)$
Examples
Example 1: Any collection $\mathbf A$ of binary relations on a set $X$ such that $\mathbf A$ is closed under union, intersection and composition.
H. Andreka1) proves that these examples generate the variety DLOS.
Basic results
Properties
Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.
Finite members
$\begin{array}{lr}
f(1)= &1\\ f(2)= &6\\ f(3)= &44\\ f(4)= &479\\ f(5)= &\\
\end{array}$