Commutative partially ordered semigroups

Abbreviation: CPoSgrp

Definition

A \emph{commutative partially ordered semigroup} is a partially ordered semigroup $\mathbf{A}=\langle A,\cdot,\le\rangle$ such that

$\cdot$ is \emph{commutative}: $xy=yx$

Remark: This is a template. If you know something about this class, click on the ``Edit text of this page'' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be commutative partially ordered semigroups. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a orderpreserving homomorphism: $h(x \cdot y)=h(x) \cdot h(y)$ and $x\le y\Longrightarrow h(x)\le h(y)$.

Definition

A \emph{…} is a structure $\mathbf{A}=\langle A,\ldots\rangle$ of type $\langle …\rangle$ such that

$\ldots$ is …: $axiom$

$\ldots$ is …: $axiom$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr}

f(1)= &1\\
f(2)= &\\
f(3)= &\\
f(4)= &\\
f(5)= &\\

\end{array}$ $\begin{array}{lr}

f(6)= &\\
f(7)= &\\
f(8)= &\\
f(9)= &\\
f(10)= &\\

\end{array}$

Subclasses

[[Commutative partially ordered monoids]] expansion

Superclasses

[[Partially ordered semigroups]] supervariety
[[Commutative semigroups]] subreduct

References


QR Code
QR Code commutative_partially_ordered_semigroups (generated for current page)