Table of Contents
Commutative partially ordered semigroups
Abbreviation: CPoSgrp
Definition
A \emph{commutative partially ordered semigroup} is a partially ordered semigroup $\mathbf{A}=\langle A,\cdot,\le\rangle$ such that
$\cdot$ is \emph{commutative}: $xy=yx$
Remark: This is a template. If you know something about this class, click on the ``Edit text of this page'' link at the bottom and fill out this page.
It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.
Morphisms
Let $\mathbf{A}$ and $\mathbf{B}$ be commutative partially ordered semigroups. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a orderpreserving homomorphism: $h(x \cdot y)=h(x) \cdot h(y)$ and $x\le y\Longrightarrow h(x)\le h(y)$.
Definition
A \emph{…} is a structure $\mathbf{A}=\langle A,\ldots\rangle$ of type $\langle …\rangle$ such that
$\ldots$ is …: $axiom$
$\ldots$ is …: $axiom$
Examples
Example 1:
Basic results
Properties
Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.
Finite members
$\begin{array}{lr}
f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\
\end{array}$ $\begin{array}{lr}
f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\
\end{array}$
Subclasses
[[Commutative partially ordered monoids]] expansion
Superclasses
[[Partially ordered semigroups]] supervariety
[[Commutative semigroups]] subreduct