Processing math: 100%

Algebras

Some 1-element algebras

Some 2-element algebras

  • 2-element boolean algebra B2={0,1},,0,,1,
  • 2-element chain C2={0,1},,
  • 2-element cyclic group Z2={0,1},+2,2,0
  • 2-element field F2={0,1},+2,2,0,2,1
  • 2-element mono-unary algebras U2,0={0,1},0, U2,1={0,1},1, U2,={0,1},
  • 2-element semilattice S2={0,1},
  • 2-element set 2={0,1}

Some 3-element algebras

  • 3-element chain C3={0,1,2},,
  • 3-element cyclic group Z3={0,1,2},+3,3,0
  • 3-element field F3={0,1,2},+3,3,0,3,1
  • 3-element semilattices S3,0={0,1,2},, S3,1={0,1,2},min

Some 4-element algebras

  • 4-element boolean algebra B22={0,1,2,3},,0,,3,
  • 4-element chain C4={0,1,2,3},,
  • 4-element cyclic group Z4={0,1,2,3},+4,4,0
  • 4-element distributive lattice (C2)2={(0,0),(0,1),(1,0),(1,1)},,
  • 4-element field F4={0,1,x,x+1},+2,2,0,,1F2[x]/x2+x+1
  • 4-element noncyclic group (Z2)2={(0,0),(0,1),(1,0),(1,1)},+2,2,(0,0)
  • 4-element nonunital rings Z4,0={0,1,2,3},+4,4,0,0, (F2)2={(0,0),(0,1),(1,0),(1,1)},+2,2,(0,0),0
  • 4-element unital rings Z4,1={0,1,2,3},+4,4,0,4,1, (F2)2={(0,0),(0,1),(1,0),(1,1)},+2,2,(0,0),,(1,1)

Some 5-element algebras

  • 5-element chain C5={0,1,2,3,4},,
  • 5-element cyclic group Z5={0,1,2,3,4},+5,5,0

Some 6-element algebras

  • 6-element nonabelian group S3={(),(12),(13),(23),(123),(132)},,1,()

Some n-element algebras

  • 2^k-element boolean algebra Bk2={0,1,2,,2k1},,0,,2k1,
  • k!-element symmetric group Sk={permutations on k-element set},,1,()
  • n-element chain Cn={0,1,2,,n1},,
  • n-element cyclic group Zn={0,1,2,,n1},+n,n,0
  • p^k-element field Fpk={0,1,,p1,x,},+p,p,0,,1Fp[x]/f(x)

Some infinite algebras


QR Code
QR Code algebras (generated for current page)