Table of Contents
Algebras
Some 1-element algebras
- 1-element boolean algebra $\mathbb B_1=\langle\{0\},\vee,0,\wedge,0,'\rangle$
- 1-element chain $\mathbb C_1=\langle\{0\},\vee,\wedge\rangle$
- 1-element group $\mathbb Z_1=\langle\{0\},+_1,-_1,0\rangle$
- 1-element mono-unary algebra $\mathbb U_1=\langle\{0\},0\rangle$
- 1-element semilattice $\mathbb S_1=\langle\{0\},\cdot\rangle$
- 1-element set $\mathbf 1=\langle\{0\}\rangle$
Some 2-element algebras
- 2-element boolean algebra $\mathbb B_2=\langle\{0,1\},\vee,0,\wedge,1,'\rangle$
- 2-element chain $\mathbb C_2=\langle\{0,1\},\vee,\wedge\rangle$
- 2-element cyclic group $\mathbb Z_2=\langle\{0,1\},+_2,-_2,0\rangle$
- 2-element field $\mathbb F_2=\langle\{0,1\},+_2,-_2,0,\cdot_2,1\rangle$
- 2-element mono-unary algebras $\mathbb U_{2,0}=\langle\{0,1\},0\rangle$, $\mathbb U_{2,1}=\langle\{0,1\},1\rangle$, $\mathbb U_{2,'}=\langle\{0,1\},'\rangle$
- 2-element semilattice $\mathbb S_2=\langle\{0,1\},\cdot\rangle$
- 2-element set $\mathbf 2=\langle\{0,1\}\rangle$
Some 3-element algebras
- 3-element chain $\mathbb C_3=\langle\{0,1,2\},\vee,\wedge\rangle$
- 3-element cyclic group $\mathbb Z_3=\langle\{0,1,2\},+_3,-_3,0\rangle$
- 3-element field $\mathbb F_3=\langle\{0,1,2\},+_3,-_3,0,\cdot_3,1\rangle$
- 3-element semilattices $\mathbb S_{3,0}=\langle\{0,1,2\},\cdot\rangle$, $\mathbb S_{3,1}=\langle\{0,1,2\},\min\rangle$
Some 4-element algebras
- 4-element boolean algebra $\mathbb B_2^2=\langle\{0,1,2,3\},\vee,0,\wedge,3,'\rangle$
- 4-element chain $\mathbb C_4=\langle\{0,1,2,3\},\vee,\wedge\rangle$
- 4-element cyclic group $\mathbb Z_4=\langle\{0,1,2,3\},+_4,-_4,0\rangle$
- 4-element distributive lattice $(\mathbb C_2)^2=\langle\{(0,0),(0,1),(1,0),(1,1)\},\vee,\wedge\rangle$
- 4-element field $\mathbb F_4=\langle\{0,1,x,x+1\},+_2,-_2,0,\cdot,1\rangle\cong\mathbb F_2[x]/\langle x^2+x+1\rangle$
- 4-element noncyclic group $(\mathbb Z_2)^2=\langle\{(0,0),(0,1),(1,0),(1,1)\},+_2,-_2,(0,0)\rangle$
- 4-element nonunital rings $\mathbb Z_{4,0}=\langle\{0,1,2,3\},+_4,-_4,0,\cdot_0\rangle$, $(\mathbb F_2)^2=\langle\{(0,0),(0,1),(1,0),(1,1)\},+_2,-_2,(0,0),\cdot_0\rangle$
- 4-element unital rings $\mathbb Z_{4,1}=\langle\{0,1,2,3\},+_4,-_4,0,\cdot_4,1\rangle$, $(\mathbb F_2)^2=\langle\{(0,0),(0,1),(1,0),(1,1)\},+_2,-_2,(0,0),\cdot,(1,1)\rangle$
Some 5-element algebras
- 5-element chain $\mathbb C_5=\langle\{0,1,2,3,4\},\vee,\wedge\rangle$
- 5-element cyclic group $\mathbb Z_5=\langle\{0,1,2,3,4\},+_5,-_5,0\rangle$
Some 6-element algebras
- 6-element nonabelian group $S_3=\langle\{(),(12),(13),(23),(123),(132)\},\circ,{}^{-1},()\rangle$
Some n-element algebras
- 2^k-element boolean algebra $\mathbb B_2^k=\langle\{0,1,2,\ldots,2^k-1\},\vee,0,\wedge,2^k-1,'\rangle$
- k!-element symmetric group $S_k=\langle\{$permutations on $k$-element set$\},\circ,{}^{-1},()\rangle$
- n-element chain $\mathbb C_n=\langle\{0,1,2,\ldots,n-1\},\vee,\wedge\rangle$
- n-element cyclic group $\mathbb Z_n=\langle\{0,1,2,\ldots,n-1\},+_n,-_n,0\rangle$
- p^k-element field $\mathbb F_{p^k}=\langle\{0,1,\ldots,p-1,x,\ldots\},+_p,-_p,0,\cdot,1\rangle\cong\mathbb F_p[x]/\langle f(x)\rangle$
Some infinite algebras
- Positive integers additive semigroup $\langle \mathbb Z^+,+\rangle$
- Positive integers monoid $\langle \mathbb Z^+,\cdot,1\rangle$
- Natural numbers additive monoid $\langle \mathbb N,+,0\rangle$
- Natural numbers multiplicative monoid $\langle \mathbb N,\cdot,1\rangle$
- Integers additive group $\langle \mathbb Z,+,-,0\rangle$
- Integers ring $\langle \mathbb Z,+,-,0,\cdot,1\rangle$
- Integers lattice-ordered group $\langle \mathbb Z,\vee,\wedge,+,-,0\rangle$
- Rational numbers additive group $\langle \mathbb Q,+,-,0\rangle$
- Positive rational numbers group $\langle \mathbb Q^+,\cdot,{}^{-1},1\rangle$
- Rational numbers field $\langle \mathbb Q,+,-,0,\cdot,1\rangle$
- Real numbers field $\langle \mathbb R,+,-,0,\cdot,1\rangle$
- Gaussian integers ring $\langle \mathbb Z[i],+,-,0,\cdot,1\rangle$
- Complex numbers field $\langle \mathbb C,+,-,0,\cdot,1\rangle$
- Natural number chain $\langle \mathbb N,\vee,\wedge\rangle$
- Negative integer chain $\langle \mathbb Z^-,\vee,\wedge\rangle$
- Integer chain $\langle \mathbb Z,\vee,\wedge\rangle$
- Rational number chain $\langle \mathbb Q,\vee,\wedge\rangle$