Abbreviation: Rng
A \emph{ring} is a structure $\mathbf{R}=\langle R,+,-,0,\cdot \rangle $ of type $\langle 2,1,0,2\rangle $ such that
$\langle R,+,-,0\rangle $ is an abelian groups
$\langle R,\cdot \rangle $ is a semigroups
$\cdot $ distributes over $+$: $x\cdot (y+z)=x\cdot y+x\cdot z$, $(y+z)\cdot x=y\cdot x+z\cdot x$
Let $\mathbf{R}$ and $\mathbf{S}$ be rings. A morphism from $\mathbf{R}$ to $\mathbf{S}$ is a function $h:R\to S$ that is a homomorphism:
$h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$
Remark: It follows that $h(0)=0$ and $h(-x)=-h(x)$.
Example 1: $\langle\mathbb{Z},+,-,0,\cdot\rangle$, the ring of integers with addition, subtraction, zero, and multiplication.
$0$ is a zero for $\cdot$: $0\cdot x=0$ and $x\cdot 0=0$.
$\begin{array}{lr}
f(1)= &1
f(2)= &2
f(3)= &2
f(4)= &11
f(5)= &2
f(6)= &4
\end{array}$