Abbreviation: BrA
A \emph{Brouwerian algebra} is a structure $\mathbf{A}=\langle A, \vee, \wedge, 1, \rightarrow\rangle$ such that
$\langle A, \vee, \wedge, 1\rangle$ is a distributive lattice with top
$\rightarrow$ gives the residual of $\wedge$: $x\wedge y\leq z\Longleftrightarrow y\leq x\rightarrow z$
Let $\mathbf{A}$ and $\mathbf{B}$ be Brouwerian algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(1)=1$, $h(x\rightarrow y)=h(x)\rightarrow h(y)$
A \emph{Brouwerian algebra} is a BL-algebra $\mathbf{A}=\langle A, \vee, \wedge, 1, \cdot, \rightarrow\rangle$ such that
$x\wedge y=x\cdot y$
Example 1:
Equational theory | decidable |
---|---|
Quasiequational theory | decidable |
First-order theory | undecidable |
Locally finite | no |
Residual size | unbounded |
Congruence distributive | yes |
Congruence modular | yes |
Congruence n-permutable | yes, $n=2$ |
Congruence e-regular | yes, $e=1$ |
Congruence uniform | no |
Congruence extension property | yes |
Definable principal congruences | yes |
Equationally def. pr. cong. | yes |
Amalgamation property | yes |
Strong amalgamation property | yes |
Epimorphisms are surjective | yes |
$\begin{array}{lr}
f(1)= &1
f(2)= &1
f(3)= &1
f(4)= &2
f(5)= &3
f(6)= &5
f(7)= &8
f(8)= &15
f(9)= &26
f(10)= &47
f(11)= &82
f(12)= &151
f(13)= &269
f(14)= &494
f(15)= &891
f(16)= &1639
f(17)= &2978
f(18)= &5483
f(19)= &10006
f(20)= &18428
Values known up to size 49 [Erne, Heitzig, Reinhold (2002)]
\end{array}$