Processing math: 100%

Quasi-MV-algebras

Abbreviation: qMV

Definition

A \emph{quasi-MV-algebra}1) is a structure A=A,,,0,1 such that

(xy)z=x(yz)

x=x

x1=1

(xy)y=(yx)x

(x0)=x0

(x0)0=x0

0=1

Morphisms

Let A and B be MV-algebras. A morphism from A to B is a function h:AB that is a homomorphism:

h(xy)=h(x)h(y), h(x)=h(x), h(0)=0

Examples

The standard qMV-algebra is S=[0,1]2,,,0,1 where a,bc,d=min(1,a+c),12, a,b=1a,1b, 0=0,12 and 1=1,12.

Basic results

The variety of qMV-algebras is generated by the standard qMV-algebra.

The operation is commutative: xy=yx.

Every qMV-algebra that satisfies x0=x is an MV-algebra.

Properties

Finite members

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# of algs 1 2 3 6 7 14 15 31 32 65 68
# of si's 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Subclasses

Superclasses

References


1) A. Ledda, M. Konig, F. Paoli and R. Giuntini, \emph{MV algebras and quantum computation}, Studia Logica, \textbf{82}(2), 2006, 245–270

QR Code
QR Code quasi-mv-algebra (generated for current page)