−Table of Contents
Quasi-MV-algebras
Abbreviation: qMV
Definition
A \emph{quasi-MV-algebra}1) is a structure A=⟨A,⊕,′,0,1⟩ such that
(x⊕y)⊕z=x⊕(y⊕z)
x″=x
x⊕1=1
(x′⊕y)′⊕y=(y′⊕x)′⊕x
(x⊕0)′=x′⊕0
(x⊕0)⊕0=x⊕0
0′=1
Morphisms
Let A and B be MV-algebras. A morphism from A to B is a function h:A→B that is a homomorphism:
h(x⊕y)=h(x)⊕h(y), h(x′)=h(x)′, h(0)=0
Examples
The standard qMV-algebra is S=⟨[0,1]2,⊕,′,0,1⟩ where ⟨a,b⟩⊕⟨c,d⟩=⟨min(1,a+c),12⟩, ⟨a,b⟩′=⟨1−a,1−b⟩, 0=⟨0,12⟩ and 1=⟨1,12⟩.
Basic results
The variety of qMV-algebras is generated by the standard qMV-algebra.
The operation ⊕ is commutative: x⊕y=y⊕x.
Every qMV-algebra that satisfies x⊕0=x is an MV-algebra.
Properties
Finite members
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# of algs | 1 | 2 | 3 | 6 | 7 | 14 | 15 | 31 | 32 | 65 | 68 | ||||||||||||||
# of si's | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Subclasses
Superclasses
References
1)
A. Ledda, M. Konig, F. Paoli and R. Giuntini,
\emph{MV algebras and quantum computation},
Studia Logica, \textbf{82}(2), 2006, 245–270