−Table of Contents
Ortholattices
Abbreviation: OLat
Definition
An \emph{ortholattice} is a structure L=⟨L,∨,0,∧,1,′⟩ such that
⟨L,∨,0,∧,1⟩ is a bounded lattice
′ is complementation: x∨x′=1, x∧x′=0, x″
' satisfies De Morgan's laws: (x\vee y)'=x'\wedge y', (x\wedge y)'=x'\vee y'
Morphisms
Let \mathbf{L} and \mathbf{M} be ortholattices. A morphism from \mathbf{L} to \mathbf{M} is a function h:L\to M that is a homomorphism:
h(x\vee y)=h(x)\vee h(y), h(x\wedge y)=h(x)\wedge h(y), h(x')=h(x)'
Examples
Example 1: \langle P(S),\cup ,\emptyset ,\cap ,S\rangle , the collection of subsets of a set S, with union, empty set, intersection, and the whole set S.
Basic results
Properties
Finite members
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# of algs | 1 | 1 | 0 | 1 | 0 | 2 | 0 | 5 | 0 | 15 | 0 | 60 | 0 | 311 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
# of si's | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 3 | 0 | 11 | 0 | 45 | 0 | 240 | 0 | 0 | 0 | 0 | 0 | 0 |