Processing math: 23%

Ortholattices

Abbreviation: OLat

Definition

An \emph{ortholattice} is a structure L=L,,0,,1, such that

L,,0,,1 is a bounded lattice

is complementation: xx=1, xx=0, x

' satisfies De Morgan's laws: (x\vee y)'=x'\wedge y', (x\wedge y)'=x'\vee y'

Morphisms

Let \mathbf{L} and \mathbf{M} be ortholattices. A morphism from \mathbf{L} to \mathbf{M} is a function h:L\to M that is a homomorphism:

h(x\vee y)=h(x)\vee h(y), h(x\wedge y)=h(x)\wedge h(y), h(x')=h(x)'

Examples

Example 1: \langle P(S),\cup ,\emptyset ,\cap ,S\rangle , the collection of subsets of a set S, with union, empty set, intersection, and the whole set S.

Basic results

Properties

Finite members

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# of algs 1 1 0 1 0 2 0 5 0 15 0 60 0 311 0 0 0 0 0 0
# of si's 0 1 0 0 0 2 0 3 0 11 0 45 0 240 0 0 0 0 0 0

Subclasses

Superclasses

References


1) G. Bruns and J. Harding, \emph{Amalgamation of ortholattices}, Order 14 (1997/98), no. 3, 193–209 MRreview

QR Code
QR Code ortholattices (generated for current page)