Processing math: 100%

Ore domains

Abbreviation: OreDom

Definition

An \emph{Ore domain} is a ring with identity A=A,+,,0,,1 such that

is \emph{integral}: xy=0x=0 or y=0

nonzero common multiples exist: x0yuv(xu=yv0) and uv(ux=vy0)

Remark: This is a template. If you know something about this class, click on the 'Edit text of this page' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.

Morphisms

Let A and B be … . A morphism from A to B is a function h:AB that is a homomorphism: h(xy)=h(x)h(y)

Definition

An \emph{…} is a structure A=A, of type such that

is …: axiom

is …: axiom

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr}

f(1)= &1\\
f(2)= &\\
f(3)= &\\
f(4)= &\\
f(5)= &\\

\end{array}\begin{array}{lr}

f(6)= &\\
f(7)= &\\
f(8)= &\\
f(9)= &\\
f(10)= &\\

\end{array}$

Subclasses

[[...]] subvariety
[[...]] expansion

Superclasses

[[...]] supervariety
[[...]] subreduct

References


1) F. Lastname, \emph{Title}, Journal, \textbf{1}, 23–45 MRreview

QR Code
QR Code ore_domains (generated for current page)