### Table of Contents

## Normal bands

Abbreviation: **NBand**

### Definition

A \emph{normal band} is a bands $\mathbf{B}=\langle B,\cdot \rangle $ such that

$\cdot $ is normal: $x\cdot y\cdot z\cdot x=x\cdot z\cdot y\cdot x$.

##### Morphisms

Let $\mathbf{B}$ and $\mathbf{C}$ be normal bands. A morphism from $\mathbf{B}$ to $\mathbf{C}$ is a function $h:B\rightarrow C$ that is a homomorphism:

$h(xy)=h(x)h(y)$

### Examples

### Basic results

### Properties

### Finite members

$\begin{array}{lr}
f(1)= &1

f(2)= &

f(3)= &

f(4)= &

f(5)= &

f(6)= &

f(7)= &

\end{array}$