−Table of Contents
Modular lattices
Abbreviation: MLat
Definition
A \emph{modular lattice} is a lattice L=⟨L,∨,∧⟩ that satisfies the
\emph{modular identity}: ((x∧z)∨y)∧z=(x∧z)∨(y∧z)
Definition
A \emph{modular lattice} is a lattice L=⟨L,∨,∧⟩ that satisfies the
\emph{modular law}: x≤z⟹(x∨y)∧z≤x∨(y∧z)
Definition
A \emph{modular lattice} is a lattice L=⟨L,∨,∧⟩ such that L has no sublattice isomorphic
to the pentagon N5 <canvas id="c1" width="60" height="60"></canvas>
<script>
unit=20;
labelnodes=false;
function node(x,y,t,r,nodecolor){
nodes[t]=[];nodes[t][0]=x;nodes[t][1]=y;if(r==undefined)r=(labelnodes?6:3);nodes[t][2]=r;
if(nodecolor==undefined)nodecolor="black";nodes[t][3]=nodecolor;
}
function edge(i,j,edgecolor){
if(edgecolor==undefined)edgecolor="black";nodecolor=nodes[i][3];
x=nodes[i][0];y=nodes[i][1];z=nodes[j][0];w=nodes[j][1];r=nodes[i][2];
c.strokeStyle=edgecolor;c.beginPath();c.moveTo(unit*x,c.canvas.height-unit*y);c.lineTo(unit*z,c.canvas.height-unit*w);c.stroke();
c.strokeStyle=nodecolor;c.fillStyle="white";c.beginPath();c.arc(unit*x,c.canvas.height-unit*y,r,0,6.3,true);c.fill();if(r!=0)c.stroke();
if(labelnodes){c.fillStyle=nodecolor;c.fillText(i,unit*x-2.7,c.canvas.height-unit*y+3.5);}
}
nodes=new Array;c=document.getElementById('c1').getContext('2d');c.translate(10,-4);
node(1,2,"4");
node(0,0.66,"1");node(0,1.33,"2");node(2,1,"3");
node(1,0,"0");
edge(4,2);edge(4,3);
edge(2,1);
edge(1,0);edge(3,0);
edge(0,0);
</script>
Morphisms
Let L and M be modular lattices. A morphism from L to M is a function h:L→M that is a homomorphism:
h(x∨y)=h(x)∨h(y), h(x∧y)=h(x)∧h(y)
Examples
Example 1: M3 <canvas id="c2" width="60" height="60"></canvas>
<script>
nodes=new Array;c=document.getElementById('c2').getContext('2d');c.translate(10,-4);
node(1,2,"4");
node(0,1,"1");node(1,1,"2");node(2,1,"3");
node(1,0,"0");
edge(4,1);edge(4,2);edge(4,3);
edge(1,0);edge(2,0);edge(3,0);
edge(0,0);
</script>
is the smallest nondistributive modular lattice. By a result of 1)
this lattice occurs as a sublattice of every nondistributive
modular lattice.
Basic results
Properties
Classtype | variety |
---|---|
Equational theory | undecidable 2) 3) |
Quasiequational theory | undecidable 4) |
First-order theory | undecidable |
Locally finite | no |
Residual size | unbounded |
Congruence distributive | yes |
Congruence modular | yes |
Congruence n-permutable | no |
Congruence regular | no |
Congruence uniform | no |
Congruence extension property | no |
Definable principal congruences | no |
Equationally def. pr. cong. | no |
Amalgamation property | no |
Strong amalgamation property | no |
Epimorphisms are surjective | no |
Finite members
f(1)=1f(2)=1f(3)=1f(4)=2f(5)=4f(6)=8f(7)=16f(8)=34f(9)=72f(10)=157f(11)=343f(12)=766f(13)=1718f(14)=3899f(15)=8898f(16)=20475f(17)=47321f(18)=110024f(19)=256791f(20)=601991f(21)=1415768f(22)=3340847f(23)=7904700f(24)=18752942f(25)=f(26)=5)