Processing math: 100%

Modular lattices

Abbreviation: MLat

Definition

A \emph{modular lattice} is a lattice L=L,, that satisfies the

\emph{modular identity}: ((xz)y)z=(xz)(yz)

Definition

A \emph{modular lattice} is a lattice L=L,, that satisfies the

\emph{modular law}: xz(xy)zx(yz)

Definition

A \emph{modular lattice} is a lattice L=L,, such that L has no sublattice isomorphic to the pentagon N5 <canvas id="c1" width="60" height="60"></canvas> <script> unit=20; labelnodes=false; function node(x,y,t,r,nodecolor){ nodes[t]=[];nodes[t][0]=x;nodes[t][1]=y;if(r==undefined)r=(labelnodes?6:3);nodes[t][2]=r; if(nodecolor==undefined)nodecolor="black";nodes[t][3]=nodecolor; } function edge(i,j,edgecolor){ if(edgecolor==undefined)edgecolor="black";nodecolor=nodes[i][3]; x=nodes[i][0];y=nodes[i][1];z=nodes[j][0];w=nodes[j][1];r=nodes[i][2]; c.strokeStyle=edgecolor;c.beginPath();c.moveTo(unit*x,c.canvas.height-unit*y);c.lineTo(unit*z,c.canvas.height-unit*w);c.stroke(); c.strokeStyle=nodecolor;c.fillStyle="white";c.beginPath();c.arc(unit*x,c.canvas.height-unit*y,r,0,6.3,true);c.fill();if(r!=0)c.stroke(); if(labelnodes){c.fillStyle=nodecolor;c.fillText(i,unit*x-2.7,c.canvas.height-unit*y+3.5);} } nodes=new Array;c=document.getElementById('c1').getContext('2d');c.translate(10,-4); node(1,2,"4"); node(0,0.66,"1");node(0,1.33,"2");node(2,1,"3"); node(1,0,"0"); edge(4,2);edge(4,3); edge(2,1); edge(1,0);edge(3,0); edge(0,0); </script>

Morphisms

Let L and M be modular lattices. A morphism from L to M is a function h:LM that is a homomorphism:

h(xy)=h(x)h(y), h(xy)=h(x)h(y)

Examples

Example 1: M3 <canvas id="c2" width="60" height="60"></canvas> <script> nodes=new Array;c=document.getElementById('c2').getContext('2d');c.translate(10,-4); node(1,2,"4"); node(0,1,"1");node(1,1,"2");node(2,1,"3"); node(1,0,"0"); edge(4,1);edge(4,2);edge(4,3); edge(1,0);edge(2,0);edge(3,0); edge(0,0); </script> is the smallest nondistributive modular lattice. By a result of 1) this lattice occurs as a sublattice of every nondistributive modular lattice.

Basic results

Properties

Finite members

f(1)=1f(2)=1f(3)=1f(4)=2f(5)=4f(6)=8f(7)=16f(8)=34f(9)=72f(10)=157f(11)=343f(12)=766f(13)=1718f(14)=3899f(15)=8898f(16)=20475f(17)=47321f(18)=110024f(19)=256791f(20)=601991f(21)=1415768f(22)=3340847f(23)=7904700f(24)=18752942f(25)=f(26)=5)

Subclasses

Superclasses

References


1) Richard Dedekind, \emph{\“Uber die von drei Moduln erzeugte Dualgruppe}, Math. Ann., \textbf{53}, 1900, 371–403
2) Ralph Freese, \emph{Free modular lattices}, Trans. Amer. Math. Soc., \textbf{261}, 1980, 81–91
3) Christian Herrmann, \emph{On the word problem for the modular lattice with four free generators}, Math. Ann., \textbf{265}, 1983, 513–527
4) L. Lipshitz, \emph{The undecidability of the word problems for projective geometries and modular lattices}, Trans. Amer. Math. Soc., \textbf{193}, 1974, 171–180
5) Peter Jipsen, Nathan Lawless, \emph{Generating all finite modular lattices of a given size}, Algebra Universalis, \textbf{74}, 2015, 253–264

QR Code
QR Code modular_lattices (generated for current page)