−Table of Contents
Lukasiewicz algebras of order n
Abbreviation: LAn
Definition
A \emph{Lukasiewicz algebra of order n} is a structure A=⟨A,∨,0,∧,1,¬,σ0,…,σn−1⟩ such that
⟨A,∨,0,∧,1,¬⟩ is a De Morgan algebras
1. σi is a lattice homomorphism: σi(x∨y)=σi(x)∨σi(y)andσi(x∧y)=σi(x)∧σi(y)
2. σi(x)∨¬(σi(x))=1, σi(x)∧¬(σi(x))=0
3. σi(σj(x))=σj(x) for 1≤j≤n−1
4. σi(¬x)=¬(σn−i(x))
5. σi(x)∧σj(x)=σi(x) for i≤j≤n−1
6. x∨σn−1(x)=σn−1(x), x∧σ1(x)=σ1(x)
7. y∧(x∨¬(σi(x))∨σi+1(y))=y for i≠n−1
Morphisms
Let A and B be Lukasiewicz algebras of order n. A morphism from A to B is a function h:A→B that is a homomorphism:
h(x∨y)=h(x)∨h(y), h(¬x)=¬h(x), h(σi(x))=σi(h(x)) for i=0,…,n−1
Examples
Example 1:
Basic results
Properties
Finite members
f(1)=1f(2)=f(3)=f(4)=f(5)=f(6)=f(7)=f(8)=f(9)=f(10)=