Processing math: 100%

Lukasiewicz algebras of order n

Abbreviation: LAn

Definition

A \emph{Lukasiewicz algebra of order n} is a structure A=A,,0,,1,¬,σ0,,σn1 such that

A,,0,,1,¬ is a De Morgan algebras

1. σi is a lattice homomorphism: σi(xy)=σi(x)σi(y)andσi(xy)=σi(x)σi(y)

2. σi(x)¬(σi(x))=1, σi(x)¬(σi(x))=0

3. σi(σj(x))=σj(x) for 1jn1

4. σi(¬x)=¬(σni(x))

5. σi(x)σj(x)=σi(x) for ijn1

6. xσn1(x)=σn1(x), xσ1(x)=σ1(x)

7. y(x¬(σi(x))σi+1(y))=y for in1

Morphisms

Let A and B be Lukasiewicz algebras of order n. A morphism from A to B is a function h:AB that is a homomorphism:

h(xy)=h(x)h(y), h(¬x)=¬h(x), h(σi(x))=σi(h(x)) for i=0,,n1

Examples

Example 1:

Basic results

Properties

Finite members

f(1)=1f(2)=f(3)=f(4)=f(5)=f(6)=f(7)=f(8)=f(9)=f(10)=

Subclasses

Superclasses

References


QR Code
QR Code lukasiewicz_algebras_of_order_n (generated for current page)