Processing math: 100%

Syntax | Terms | Equations | Horn formulas | Universal formulas | First-order formulas | Theories

Here we list equations, with the shorter term on the right (if possible).

1 trivial equations: x=y f(x)=y xy=z one-element algebras
2 identity operation: f(x)=x
3 involutive operation: f(f(x))=x
4 inverse operations: f(g(x))=x
5 inside absorption: f(g(x))=f(x)
6 outside absorption: f(g(x))=g(x)
7 order-n operation: fn(x)=x
8 f-idempotent f(f(x))=f(x)
9 constant operations: f(x)=1 f(x)=f(y) xy=1 xy=f(z) xy=zw
10 left projection: xy=x right projection: xy=y
11 idempotent: xx=x
12 n-potent: xn+1=xn
13 left identity: 1x=x right identity: x1=x
14 left zero: 0x=0 right zero: x0=0
15 left f-projection: xy=f(x) right f-projection: xy=f(y)
16 square constant: xx=1
17 square definition: xx=f(x)
18 left constant multiple: 1x=f(x) right constant multiple: x1=f(x)
19 commutative: xy=yx
20 left inverse: f(x)x=1 right inverse: xf(x)=1
21 left f-identity: f(x)x=x right f-identity: xf(x)=x
22 interassociative: x(y+z)=(x+y)z
23 associative: x(yz)=(xy)z
24 left commutativity: x(yz)=y(xz) right commutativity: (xy)z=(xz)y
25 left idempotent: x(xy)=xy right idempotent: (xy)y=xy
26 left rectangular: (xy)x=x right rectangular: x(yx)=x
27 left absorption: (xy)+x=x right absorption: x+(yx)=x
28 left absorption1: (xy)+y=y right absorption1: y+(xy)=y
29 left subtraction: x(x+y)=y right subtraction: (y+x)x=y
30 left distributive: x(y+z)=(xy)+(xz) right distributive: (x+y)z=(xz)+(yz)
31 left self-distributive: x(yz)=(xy)(xz) right distributive: (xy)z=(xz)(yz)
32 f-commutative: f(x)f(y)=f(y)f(x)
33 f-involutive: f(xy)=f(y)f(x)
34 f-interdistributive: f(xy)=f(x)+f(y)
35 f-distributive: f(xy)=f(x)f(y) also f-linear
36 left f-constant multiple: f(1x)=1f(x) right f-constant multiple: f(x1)=f(x)1
37 left twisted: f(xy)x=xf(y) right twisted: xf(yx)=f(y)x
38 left locality: f(f(x)y)=f(xy) right locality: f(xf(y))=f(xy)
39 left f-distributive: f(f(x)y)=f(x)f(y) right f-distributive: f(xf(y))=f(x)f(y)
40 left f-absorbtive: f(x)f(xy)=f(xy) right f-absorbtive: f(xy)f(y))=f(xy)
41 flexible: (xy)x=x(yx)
42 entropic: (xy)(zw)=(xz)(yw)
43 paramedial: (xy)(zw)=(wy)(zx)
44 Moufang1: ((xy)x)z=x(y(xz)) Moufang2: ((xy)z)y=x(y(zy))
45 Moufang3: (xy)(zx)=(x(yz))x Moufang4: (xy)(zx)=x((yz)x)

Here are the identities in the syntax of the Lean Theorem Prover

section identities

variables {α: Type u} {β: Type v}
variables f g: α → α → α
variables h k: α → α
variable  c: α
local notation a⬝b  := f a b
local notation a+b := g a b
local notation a⁻¹ := h a
local notation 1   := c
local notation 0   := c

def involutive              := ∀x,     h(h x) = x
def inverse_operations      := ∀x,     h(k x) = x
def left_absorption         := ∀x,     h(k x) = k x
def right_absorption        := ∀x,     h(k x) = h x
def unary_idempotent        := ∀x,     h(h x) = h x
def idempotent              := ∀x,     x⬝x = x
def left_identity           := ∀x,     1⬝x = x
def right_identity          := ∀x,     x⬝1 = x
def left_zero               := ∀x,     0⬝x = 0
def right_zero              := ∀x,     x⬝0 = 0
def left_inverse            := ∀x,     x⁻¹⬝x = 1
def right_inverse           := ∀x,     x⬝x⁻¹ = 1
def left_const_mult         := ∀x,     c⬝x = h x
def right_const_mult        := ∀x,     x⬝c = h x
def square_constant         := ∀x,     x⬝x = c
def square_unary            := ∀x,     x⬝x = h x
def left_unary_identity     := ∀x,     (h x)⬝x = x
def right_unary_identity    := ∀x,     x⬝(h x) = x
def left_unary_const_mult   := ∀x,     h(c⬝x) = c⬝(h x)
def right_unary_const_mult  := ∀x,     h(x⬝c) = (h x)⬝c
def commutative             := ∀x y,   x⬝y = y⬝x
def left_unary_projection   := ∀x y,   x⬝y = h x
def right_unary_projection  := ∀x y,   x⬝y = h y
def left_idempotent         := ∀x y,   x⬝(x⬝y) = x⬝y
def right_idempotent        := ∀x y,   (x⬝y)⬝y = x⬝y
def left_rectangular        := ∀x y,   (x⬝y)⬝x = x
def right_rectangular       := ∀x y,   x⬝(y⬝x) = x
def left_absorption1        := ∀x y,   (x⬝y)+y = y
def right_absorption1       := ∀x y,   y+(x⬝y) = y
def left_absorption2        := ∀x y,   (x⬝y)+x = x
def right_absorption2       := ∀x y,   x+(y⬝x) = x
def left_subtraction        := ∀x y,   x⬝(x+y) = y
def right_subtraction       := ∀x y,   (y+x)⬝x = y
def unary_commutative       := ∀x y,   (h x)⬝(h y) = (h y)⬝(h x)
def unary_involutive        := ∀x y,   h(x⬝y) = (h y)⬝(h x)
def interdistributive       := ∀x y,   h(x⬝y) = (h x)+(h y)
def unary_distributive      := ∀x y,   h(x⬝y) = (h x)⬝(h y) 
def left_twisted            := ∀x y,   (h(x⬝y))⬝x = x⬝(h y) 
def right_twisted           := ∀x y,   x⬝(h(y⬝x)) = (h y)⬝x
def left_locality           := ∀x y,   h((h x)⬝y) = h(x⬝y)
def right_locality          := ∀x y,   h(x⬝(h y)) = h(x⬝y)
def left_unary_distributive := ∀x y,   h((h x)⬝y) = (h x)⬝(h y)
def right_unary_distributive:= ∀x y,   h(x⬝(h y)) = (h x)⬝(h y)
def left_absorbtive         := ∀x y,   (h x)⬝(h(x⬝y)) = h(x⬝y)
def right_absorbtive        := ∀x y,   (h(x⬝y))⬝(h y) = h(x⬝y)
def flexible                := ∀x y,   (x⬝y)⬝x = x⬝(y⬝x)
def associative             := ∀x y z, x⬝(y⬝z) = (x⬝y)⬝z
def left_commutative        := ∀x y z, x⬝(y⬝z) = y⬝(x⬝z)
def right_commutative       := ∀x y z, (x⬝y)⬝z = (x⬝z)⬝y
def interassociative1       := ∀x y z, x⬝(y+z) = (x⬝y)+z
def interassociative2       := ∀x y z, x⬝(y+z) = (x+y)⬝z
def left_distributive       := ∀x y z, x⬝(y+z) = (x⬝y)+(x⬝z)
def right_distributive      := ∀x y z, (x+y)⬝z = (x⬝z)+(y⬝z)
def left_self_distributive  := ∀x y z, x⬝(y⬝z) = (x⬝y)⬝(x⬝z)
def right_self_distributive := ∀x y z, (x⬝y)⬝z = (x⬝z)⬝(y⬝z)
def Moufang1                := ∀x y z, ((x⬝y)⬝x)⬝z = x⬝(y⬝(x⬝z))
def Moufang2                := ∀x y z, ((x⬝y)⬝z)⬝y = x⬝(y⬝(z⬝y))
def Moufang3                := ∀x y z, (x⬝y)⬝(z⬝x) = (x⬝(y⬝z))⬝x
def Moufang4                := ∀x y z, (x⬝y)⬝(z⬝x) = x⬝((y⬝z)⬝x)
def entropic                := ∀x y z w, (x⬝y)⬝(z⬝w) = (x⬝z)⬝(y⬝w)
def paramedial              := ∀x y z w, (x⬝y)⬝(z⬝w) = (w⬝y)⬝(z⬝x)


end identities

QR Code
QR Code equations (generated for current page)