Table of Contents
Complete semilattices
Abbreviation: CSlat
Definition
A \emph{complete semilattice} is a directed complete partial orders $\mathbf{P}=\langle P,\leq \rangle $ such that every nonempty subset of $P$ has a greatest lower bound: $\forall S\subseteq P\ (S\ne\emptyset\Longrightarrow \exists z\in P(z=\bigwedge S))$.
Morphisms
Let $\mathbf{P}$ and $\mathbf{Q}$ be complete semilattices. A morphism from $\mathbf{P}$ to $\mathbf{Q}$ is a function $f:P\rightarrow Q$ that preserves all nonempty meets and all directed joins:
$z=\bigwedge S\Longrightarrow f(z)=\bigwedge f[S]$ for all nonempty $S\subseteq P$ and $z=\bigvee D\Longrightarrow f(z)= \bigvee f[D]$
Examples
Example 1:
Basic results
Properties
Finite members
$\begin{array}{lr}
f(1)= &1
f(2)= &
f(3)= &
f(4)= &
f(5)= &
f(6)= &
\end{array}$