Abbreviation: Top$_1$
A \emph{$T_1$-space} is a topological spaces $\mathbf{X}=\langle X,\Omega(\mathbf{X})\rangle$ such that
for every pair of distinct points in the space, there is a pair of open sets containing each point but not the other: $x,y\in X\Longrightarrow\exists U,V\in\Omega(\mathbf{X})[x\in U\setminus V\mbox{ and }y\in V\setminus U]$
Let $\mathbf{X}$ and $\mathbf{Y}$ be $T_1$-spaces. A morphism from $\mathbf{X}$ to $\mathbf{Y}$ is a function $f:X\rightarrow Y$ that is \emph{continuous}:
$V\in\Omega(\mathbf{Y})\Longrightarrow f^{-1}[V]\in\Omega(\mathbf{X})$
A \emph{$T_1$-space} is a topological spaces $\mathbf{X}=\langle X,\Omega(\mathbf{X})\rangle$ such that all
singleton subsets are closed: $X\setminus\{x\}\in\Omega(\mathbf{X})$
Example 1:
Classtype | second-order |
---|---|
Amalgamation property | yes |
Strong amalgamation property | yes |
Epimorphisms are surjective | yes |
Remark: The properties given above use an $(\mathcal{E},\mathcal{M})$ factorization system with $\mathcal{E}=$ surjective morphisms and $\mathcal{M}=$ embeddings.
1)\end{document} %</pre>