Abbreviation: sqMV
A √′\emph{quasi-MV-algebra}1) is a structure A=⟨A,⊕,√′,′,0,1,k⟩ such that √′ is a unary operation,
A=⟨A,⊕,′,0,1⟩ is a quasi-MV-algebra,
x′=√′√′x,
k′=k, and
√′(x⊕0)⊕0=k.
Let A and B be √′qMV-algebras. A morphism from A to B is a function h:A→B that is a homomorphism:
h(x⊕y)=h(x)⊕h(y), h(√′x)=√′h(x), h(0)=0, h(k)=k.
The standard √′qMV-algebra is Sr=⟨[0,1]2,⊕,√′,′,0,1,k⟩ where ⟨a,b⟩⊕⟨c,d⟩=⟨min, \sqrt{'}\langle a,b\rangle'=\langle b,1-a\rangle, \langle a,b\rangle'=\langle 1-a,1-b\rangle, \mathbf 0=\langle 0,\frac12\rangle, \mathbf 1=\langle 1,\frac12\rangle and \mathbf k=\langle \frac12,\frac12\rangle.
The variety of \sqrt{'}qMV-algebras is generated by the standard \sqrt{'}qMV-algebra.
The operation \oplus is commutative: x\oplus y = y\oplus x.
Only the trivial \sqrt{'}qMV-algebra is an MV-algebra.
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# of algs | 1 | 1 | 2 | 2 | 5 | 5 | 8 | 8 | 16 | 16 | 24 | 24 | |||||||||||||
# of si's | 0 | 1 | 1 | 0 | 2 | 0 | 0 |