Table of Contents

Sets

Abbreviation: Set

Definition

A \emph{set} is a structure $\mathbf{A}=\langle A\rangle$ with no operations or relations defined on $A$.

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be sets. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$.

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr}

f(n)= &1\\

\end{array}$

Subclasses

[[One-element structures]] 

Superclasses

References