Abbreviation: Sgrp$_0$
A \emph{semigroup with zero} is a structure $\mathbf{S}=\langle S,\cdot,0\rangle$ of type $\langle 2,0\rangle $ such that
$\langle S,\cdot\rangle$ is a semigroups
$0$ is a zero for $\cdot$: $x\cdot 0=0$, $0\cdot x=0$
Let $\mathbf{S}$ and $\mathbf{T}$ be semigroups with zero. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:S\rightarrow T$ that is a homomorphism:
$h(x\cdot y)=h(x)\cdot h(y)$, $h(0)=0$
Example 1:
Classtype | variety |
---|---|
Equational theory | decidable in PTIME |
Quasiequational theory | undecidable |
First-order theory | undecidable |
Locally finite | no |
Residual size | unbounded |
Congruence distributive | no |
Congruence modular | no |
Congruence n-permutable | no |
Congruence regular | no |
Congruence uniform | no |
Congruence extension property | |
Definable principal congruences | |
Equationally def. pr. cong. | |
Amalgamation property | |
Strong amalgamation property | |
Epimorphisms are surjective |
$\begin{array}{lr}
f(1)= &1
f(2)= &
f(3)= &
f(4)= &
f(5)= &
f(6)= &
\end{array}$