Abbreviation: RQgrp
A \emph{right quasigroup} is a structure $\mathbf{A}=\langle A,\cdot,/\rangle$ of type $\langle 2,2\rangle $ such that
$(y/x)x = y$
$(xy)/y = x$
Remark:
Let $\mathbf{A}$ and $\mathbf{B}$ be right quasigroups. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
$h(xy)=h(x)h(y)$, $h(x/y)=h(x)/h(y)$.
Example 1:
$\begin{array}{lr}
f(1)= &1
f(2)= &3
f(3)= &44
f(4)= &14022
f(5)= &
f(6)= &
f(7)= &
\end{array}$