Abbreviation: RL
A \emph{residuated lattice} is a structure $\mathbf{L}=\langle L, \vee, \wedge, \cdot, e, \backslash, /\rangle$ of type $\langle 2,2,2,0,2,2\rangle$ such that
$\langle L, \cdot, e\rangle$ is a monoid
$\langle L, \vee, \wedge\rangle$ is a lattice
$\backslash$ is the left residual of $\cdot$: $y\leq x\backslash z\Longleftrightarrow xy\leq z$
$/$ is the right residual of $\cdot$: $x\leq z/y\Longleftrightarrow xy\leq z$
Let $\mathbf{L}$ and $\mathbf{M}$ be residuated lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism:
$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)$, $h(e)=e$
Example 1:
Classtype | variety |
---|---|
Equational theory | decidable 1) implementation |
Quasiequational theory | undecidable |
First-order theory | undecidable |
Locally finite | no |
Residual size | unbounded |
Congruence distributive | yes |
Congruence modular | yes |
Congruence n-permutable | yes, $n=2$ |
Congruence regular | no |
Congruence e-regular | yes |
Congruence uniform | no |
Congruence extension property | no |
Definable principal congruences | no |
Equationally def. pr. cong. | no |
Amalgamation property | |
Strong amalgamation property | |
Epimorphisms are surjective |
$\begin{array}{lr}
f(1)= &1
f(2)= &1
f(3)= &3
f(4)= &20
f(5)= &149
f(6)= &1488
f(7)= &18554
f(8)= &295292
\end{array}$
2)\end{document} %</pre>