Table of Contents

Representable lattice-ordered groups

Abbreviation: RLGrp

Definition

A \emph{representable lattice-ordered group} (or \emph{representable} $\ell$\emph{-group}) is a lattice-ordered group $\mathbf{L}=\langle L, \vee, \wedge, \cdot, ^{-1}, e\rangle$ that satisfies the identity

$(x\wedge y)^2 = x^2\wedge y^2$

Morphisms

Let $\mathbf{L}$ and $\mathbf{M}$ be $\ell$-groups. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $f:L\rightarrow M$ that is a homomorphism: $f(x\vee y)=f(x)\vee f(y)$ and $f(x\cdot y)=f(x)\cdot f(y)$.

Remark: It follows that $f(x\wedge y)=f(x)\wedge f(y)$, $f(x^{-1})=f(x)^{-1}$, and $f(e)=e$

Examples

Basic results

Every representable $\ell$-group is a subdirect product of totally ordered groups.

Properties

Finite members

None

Subclasses

Abelian lattice-ordered groups

Superclasses

Normal valued lattice-ordered groups

References


1) Yuri Gurevic, \emph{Hereditary undecidability of a class of lattice-ordered Abelian groups}, Algebra i Logika Sem., \textbf{6}, 1967, 45–62
2) Stanley Burris, \emph{A simple proof of the hereditary undecidability of the theory of lattice-ordered abelian groups}, Algebra Universalis, \textbf{20}, 1985, 400–401, http://www.math.uwaterloo.ca/~snburris/htdocs/MYWORKS/PAPERS/HerUndecLOAG.pdf
3) A. M. W. Glass, D. Saracino and C. Wood, \emph{Non-amalgamation of ordered groups}, Math. Proc. Camb. Phil. Soc. 95 (1984), 191–195
4) Mona Cherri and Wayne B. Powell, \emph{Strong amalgamation of lattice ordered groups and modules}, International J. Math. & Math. Sci., Vol 16, No 1 (1993) 75–80, http://www.hindawi.com/journals/ijmms/1993/405126/abs/ doi:10.1155/S0161171293000080