Table of Contents

Rectangular bands

Abbreviation: RBand

Definition

A \emph{rectangular band} is a bands $\mathbf{B}=\langle B,\cdot \rangle $ such that

$\cdot $ is rectangular: $x\cdot y\cdot x=x$.

Definition

A \emph{rectangular band} is a bands $\mathbf{B}=\langle B,\cdot \rangle $ such that

$x\cdot y\cdot z=x\cdot z$.

Morphisms

Let $\mathbf{B}$ and $\mathbf{C}$ be rectangular bands. A morphism from $\mathbf{B}$ to $\mathbf{C}$ is a function $h:B\rightarrow C$ that is a homomorphism:

$h(xy)=h(x)h(y)$

Examples

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1
f(2)= &
f(3)= &
f(4)= &
f(5)= &
f(6)= &
f(7)= &
\end{array}$

Subclasses

Left-zero semigroups

Right-zero semigroups

Superclasses

Normal bands

References