Abbreviation: PoMon
A \emph{partially ordered monoid} is a structure $\mathbf{A}=\langle A,\cdot,1,\le\rangle$ such that
$\langle A,\cdot,1\rangle$ is a monoid
$\langle G,\le\rangle$ is a partially ordered set
$\cdot$ is \emph{orderpreserving}: $x\le y\Longrightarrow wxz\le wyz$
Let $\mathbf{A}$ and $\mathbf{B}$ be partially ordered monoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is an orderpreserving homomorphism: $h(x \cdot y)=h(x) \cdot h(y)$, $h(1)=1$, $x\le y\Longrightarrow h(x)\le h(y)$
Example 1:
Every monoid with the discrete partial order is a po-monoid.
$\begin{array}{lr}
f(1)= &1\\ f(2)= &4\\ f(3)= &37\\ f(4)= &549\\ f(5)= &\\
\end{array}$
Commutative partially ordered monoids
Lattice-ordered monoids expanded type
Partially ordered semigroups reduced type