Abbreviation: MLat
A \emph{modular lattice} is a lattice $\mathbf{L}=\langle L, \vee, \wedge\rangle$ that satisfies the
\emph{modular identity}: $((x\wedge z) \vee y) \wedge z = (x\wedge z) \vee (y\wedge z)$
A \emph{modular lattice} is a lattice $\mathbf{L}=\langle L, \vee, \wedge\rangle$ that satisfies the
\emph{modular law}: $x\le z\Longrightarrow (x\vee y) \wedge z\le x\vee (y\wedge z)$
A \emph{modular lattice} is a lattice $\mathbf{L}=\langle L,\vee,\wedge\rangle $ such that $\mathbf{L}$ has no sublattice isomorphic
to the pentagon $\mathbf{N}_{5}$ <canvas id="c1" width="60" height="60"></canvas>
<script>
unit=20;
labelnodes=false;
function node(x,y,t,r,nodecolor){
nodes[t]=[];nodes[t][0]=x;nodes[t][1]=y;if(r==undefined)r=(labelnodes?6:3);nodes[t][2]=r;
if(nodecolor==undefined)nodecolor="black";nodes[t][3]=nodecolor;
}
function edge(i,j,edgecolor){
if(edgecolor==undefined)edgecolor="black";nodecolor=nodes[i][3];
x=nodes[i][0];y=nodes[i][1];z=nodes[j][0];w=nodes[j][1];r=nodes[i][2];
c.strokeStyle=edgecolor;c.beginPath();c.moveTo(unit*x,c.canvas.height-unit*y);c.lineTo(unit*z,c.canvas.height-unit*w);c.stroke();
c.strokeStyle=nodecolor;c.fillStyle="white";c.beginPath();c.arc(unit*x,c.canvas.height-unit*y,r,0,6.3,true);c.fill();if(r!=0)c.stroke();
if(labelnodes){c.fillStyle=nodecolor;c.fillText(i,unit*x-2.7,c.canvas.height-unit*y+3.5);}
}
nodes=new Array;c=document.getElementById('c1').getContext('2d');c.translate(10,-4);
node(1,2,"4");
node(0,0.66,"1");node(0,1.33,"2");node(2,1,"3");
node(1,0,"0");
edge(4,2);edge(4,3);
edge(2,1);
edge(1,0);edge(3,0);
edge(0,0);
</script>
Let $\mathbf{L}$ and $\mathbf{M}$ be modular lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism:
$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$
Example 1: $M_3$ <canvas id="c2" width="60" height="60"></canvas>
<script>
nodes=new Array;c=document.getElementById('c2').getContext('2d');c.translate(10,-4);
node(1,2,"4");
node(0,1,"1");node(1,1,"2");node(2,1,"3");
node(1,0,"0");
edge(4,1);edge(4,2);edge(4,3);
edge(1,0);edge(2,0);edge(3,0);
edge(0,0);
</script>
is the smallest nondistributive modular lattice. By a result of 1)
this lattice occurs as a sublattice of every nondistributive
modular lattice.
Classtype | variety |
---|---|
Equational theory | undecidable 2) 3) |
Quasiequational theory | undecidable 4) |
First-order theory | undecidable |
Locally finite | no |
Residual size | unbounded |
Congruence distributive | yes |
Congruence modular | yes |
Congruence n-permutable | no |
Congruence regular | no |
Congruence uniform | no |
Congruence extension property | no |
Definable principal congruences | no |
Equationally def. pr. cong. | no |
Amalgamation property | no |
Strong amalgamation property | no |
Epimorphisms are surjective | no |
$\begin{array}{lr}
f(1)= &1
f(2)= &1
f(3)= &1
f(4)= &2
f(5)= &4
f(6)= &8
f(7)= &16
f(8)= &34
f(9)= &72
f(10)= &157
f(11)= &343
f(12)= &766
f(13)= &1718
f(14)= &3899
f(15)= &8898
f(16)= &20475
f(17)= &47321
f(18)= &110024
f(19)= &256791
f(20)= &601991
f(21)= &1415768
f(22)= &3340847
f(23)= &7904700
f(24)= &18752942
f(25)= &
f(26)= &
\end{array}$5)