Table of Contents

Involutive lattices

Abbreviation: InvLat

Definition

An \emph{involutive lattice} is a structure $\mathbf{A}=\langle A,\vee,\wedge,\neg\rangle$ such that

$\langle A,\vee,\wedge\rangle$ is a lattices

$\neg$ is a De Morgan involution: $\neg( x\wedge y) =\neg x\vee \neg y$, $\neg\neg x=x$

Remark: It follows that $\neg ( x\vee y) =\neg x\wedge \neg y$. Thus $\neg$ is a dual automorphism.

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be involutive lattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(\neg x)=\neg h(x)$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1
f(2)= &1
f(3)= &1
f(4)= &
f(5)= &
f(6)= &
f(7)= &
f(8)= &
f(9)= &
f(10)= &
\end{array}$

Subclasses

De Morgan algebras

Superclasses

Lattices

References