Abbreviation: GPEAlg
A \emph{generalized pseudo-effect algebra} is a generalized separation algebra that is
\emph{postive}: $x\cdot y=e$ implies $x=e=y$.
Let $\mathbf{A}$ and $\mathbf{B}$ be generalized pseudo-effect algebra. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(e)=e$ and if $x\cdot y\ne *$ then $h(x \cdot y)=h(x) \cdot h(y)$.
Example 1:
$\begin{array}{lr}
f(1)= &1\\ f(2)= &1\\ f(3)= &2\\ f(4)= &5\\ f(5)= &13\\ f(6)= &42\\ f(7)= &171\\ f(8)= &\\ f(9)= &\\ f(10)= &\\
\end{array}$