Table of Contents

Generalized MV-algebras

Abbreviation: GMV

Definition

A \emph{generalized MV-algebra} is a residuated lattices $\mathbf{L}=\langle L,\vee, \wedge, \cdot, e, \backslash, /\rangle$ such that

$x\vee y=x/(y\backslash x\wedge e)$, $x\vee y=(x/y\wedge e)\backslash y$

Morphisms

Let $\mathbf{L}$ and $\mathbf{M}$ be generalized MV-algebras. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)$, $h(e)=e$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1
f(2)= &1
f(3)= &
f(4)= &
f(5)= &
f(6)= &
\end{array}$

Subclasses

Commutative generalized MV-algebras

Integral generalized MV-algebras

MV-algebras

Superclasses

Generalized BL-algebras

References