Abbreviation: FL$_{ec}$
A \emph{full Lambek algebra with exchange and contraction}, or \emph{FLec-algebra}, is a FLe-algebras $\langle A, \vee, 0, \wedge, T, \cdot, 1, \backslash, /\rangle$ such that
$\cdot$ is contractive or square-increasing: $x\le x\cdot x$
Remark:
Let $\mathbf{A}$ and $\mathbf{B}$ be FLec-algebras. A morphism from $\mathbf{A} $ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
$h(x\vee y)=h(x)\vee h(y)$, $h(\bot )=\bot$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(\top )=\top$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)$, $h(1)=1$
Example 1:
Classtype | variety |
---|---|
Equational theory | decidable |
Quasiequational theory | undecidable |
First-order theory | undecidable |
Locally finite | no |
Residual size | unbounded |
Congruence distributive | yes |
Congruence modular | yes |
Congruence n-permutable | yes, $n=2$ |
Congruence regular | no |
Congruence e-regular | yes |
Congruence uniform | no |
Congruence extension property | no |
Definable principal congruences | no |
Equationally def. pr. cong. | no |
Amalgamation property | |
Strong amalgamation property | |
Epimorphisms are surjective |
$\begin{array}{lr}
f(1)= &1
f(2)= &1
f(3)= &
f(4)= &
f(5)= &
f(6)= &
\end{array}$