Abbreviation: DunnMon
A \emph{Dunn monoid} is a commutative distributive residuated lattice $\mathbf{L}=\langle L, \vee, \wedge, \cdot, e, \to \rangle$ such that
$\cdot$ is square-increasing: $x\le x^2$
Remark: Here $x^2=x\cdot x$. These algebras were first defined by J.M.Dunn in 1) and were named by R.K. Meyer2).
Let $\mathbf{L}$ and $\mathbf{M}$ be Dunn monoids. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism:
$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(x\to y)=h(x)\to h(y)$, and $h(e)=e$
Example 1:
Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.
$\begin{array}{lr}
f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\
\end{array}$ $\begin{array}{lr}
f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\
\end{array}$
commutative distributive idempotent residuated lattices subvariety
bounded Dunn monoids expansion
commutative distributive residuated lattices supervariety
square-increasing commutative residuated lattices supervariety