Processing math: 100%

Table of Contents

Continuous posets

Abbreviation: ContPos

Definition

A \emph{continuous poset} is a structure A=A, of type such that

A, is a name of class

op1 is (name of property): axiom1

op2 is …:

Remark: This is a template. If you know something about this class, click on the 'Edit text of this page' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.

Morphisms

Let A and B be … . A morphism from A to B is a function h:AB that is a homomorphism: h(xy)=h(x)h(y)

Definition

An \emph{…} is a structure A=A, of type such that

is …: axiom

is …: axiom

Examples

Example 1:

Basic results

Properties

Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.

Finite members

$\begin{array}{lr}

f(1)= &1\\
f(2)= &\\
f(3)= &\\
f(4)= &\\
f(5)= &\\

\end{array}\begin{array}{lr}

f(6)= &\\
f(7)= &\\
f(8)= &\\
f(9)= &\\
f(10)= &\\

\end{array}$

Subclasses

[[...]] subvariety
[[...]] expansion

Superclasses

[[...]] supervariety
[[...]] subreduct

References


1) F. Lastname, \emph{Title}, Journal, \textbf{1}, 23–45 MRreview