Abbreviation: BCKJMlat
A \emph{BCK-meet-semilattice} is a structure $\mathbf{A}=\langle A,\wedge,\rightarrow,1\rangle$ of type $\langle 2,2,0\rangle$ such that
(1): $(x\rightarrow y)\rightarrow 1) = 1$
(2): $1\rightarrow x = x$
(3): $x\rightarrow 1 = 1$
(4): $(x\wedge y)\rightarrow y = 1$
(5): $x\wedge((x\rightarrow y)\rightarrow y) = x$
$\wedge$ is idempotent: $x\wedge x = x$
$\wedge$ is commutative: $x\wedge y = y\wedge x$
$\wedge$ is associative: $(x\wedge y)\wedge z = x\wedge (y\wedge z)$
Remark: $x\le y \iff x\rightarrow y=1$ is a partial order, with $1$ as greatest element, and $\wedge$ is a meet in this partial order. 1)
Let $\mathbf{A}$ and $\mathbf{B}$ be BCK-meet-semilattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
$h(x\wedge y)=h(x)\wedge h(y)$, $h(x\rightarrow y)=h(x)\rightarrow h(y)$ and $h(1)=1$.
Example 1:
$\begin{array}{lr}
f(1)= &1
f(2)= &
f(3)= &
f(4)= &
f(5)= &
f(6)= &
\end{array}$