Abbreviation: ADLat
An \emph{almost distributive lattice} is a neardistributive lattice $\mathbf{L}=\langle L,\vee,\wedge\rangle$ such that
AD$_{\wedge}$: $v\wedge[u\vee (x\wedge[y\vee (x\wedge z)])]\le u\vee [(x\wedge[y\vee (x\wedge z)])\wedge(v\vee (x\wedge y)\vee (x\wedge z))]$
AD$_{\vee}$: $v\vee[u\wedge (x\vee[y\wedge (x\vee z)])]\ge u\wedge [(x\vee[y\wedge (x\vee z)])\vee(v\wedge (x\vee y)\wedge (x\vee z))]$
Let $\mathbf{L}$ and $\mathbf{M}$ be almost distributive lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism:
$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$
Example 1: $D[d]=\langle D\cup\{d'\},\vee ,\wedge\rangle$, where $D$ is any distributive lattice and $d$ is an element in it that is split into two elements $d,d'$ using Alan Day's doubling construction.
$\begin{array}{lr}
f(1)= &1
f(2)= &1
f(3)= &1
f(4)= &2
f(5)= &4
f(6)= &
f(7)= &
\end{array}$