Congruence Types
A \emph{minimal algebra} is a finite nontrivial algebra in which every unary polynomial is either constant or a permutation.
Peter P. Pálfy, \emph{Unary polynomials in algebras. I}, Algebra Universalis, \textbf{18}, 1984, 262-273 MRreview shows that if M is a minimal algebra then M is polynomially equivalent to one of the following:
- a unary algebra in which each basic operation is a permutation
- a vector space
- the 2-element Boolean algebra
- the 2-element lattice
- a 2-element semilattice.
The \emph{type} of a minimal algebra M is defined to be permutational (1), abelian (2), Boolean (3), lattice (4), or semilattice (5) accordingly.
The type set of a finite algebra is defined and analyzed extensively in the groundbreaking book now available free online David Hobby and Ralph McKenzie, \emph{The structure of finite algebras}, Contemporary Mathematics, \textbf{76}, American Mathematical Society, Providence, RI, 1988, xii+203 MRreview. With each two-element interval {θ,ψ} in the congruence lattice of a finite algebra the authors associate a collection of minimal algebras of one of the 5 types, and this defines the value of typ(θ,ψ).
For a finite algebra A, typ(A) is the union of the sets typ(θ,ψ) where {θ,ψ} ranges over all two-element intervals in the congruence lattice of A. For a class K of algebras, typ(K)={typ(A):A is a finite algebra in K}.